BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: FOCUS ON REVIEW OF MOLECULAR INTERACTION CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN BARRIER

Authors

  • Julian Julian University of Indonesia
  • Robiatul Adawiyah Universitas Indonesia
  • Sri Wahdini

DOI:

https://doi.org/10.21010/Ajidv18i1.3

Keywords:

Cryptococcus; Biomolecular Activity, Host, immune response, Fungal disease, Blood-Brain Barrier

Abstract

Global mycosis is still a problem. One of these is the cryptococcal disease. A systemic mycosis brought on by Cryptococcus is called cryptococcosis. Host immunological conditions influence infection with Cryptococcosis. When environmental spores are inhaled by the host, the spores get to the lungs, an infection is created. Alveolar macrophages and other immune cells recognize Cryptococcus in the lung. The initial line of defense against pathogens in the phagolysosome is provided by alveolar macrophages found in the lungs. When the immune system is weak, Cryptococcus uses the evasion system as a molecular interaction with the immune system and persists in the lungs without causing any symptoms such as Factor Transcription, Cell masking, N-glycan structure, Extracellular molecule, and Antioxidant system. The evasion mechanism protects and makes Cryptococcus disseminate throughout the other organs, especially CNS. If Cryptococcus escapes against the host immune system, it will disseminate to other organs, especially Cerebrospinal System by Three mechanisms. There are Trojan Horse, Paracellular, and Transcellular interactions with Blood-Brain Barrier. Disease severity is determined by the Interaction between the host’s immune system and the fungus

References

Aaron, P. A., Jamklang, M., Uhrig, J. P., & Gelli, A. (2018). The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cellular microbiology, 20(3), 10.1111/cmi.12811. https://doi.org/10.1111/cmi.12811

Abbas, A. K., Lichtman, A. H. and Pillai, S. (2019). Basic immunology e-book: functions and disorders of the immune system. Elsevier Health Sciences.

Adawiyah, R., Rozaliyani, A. and Wahyuningsih, R. (2019). ‘Kriptokokosis Meningeal: Epidemiologi Berbasis Molekular, Manifestasi Klinis dan Luarannya’, Majalah Kedokteran, 35(2), pp. 78–93.

Almeida, F., Wolf, Julie M and Casadevall, A. (2015). ‘Virulence-associated enzymes of Cryptococcus neoformans’, Eukaryotic cell, 14(12), pp. 1173–1185.

Almeida, F., Wolf, Julie M. and Casadevall, A. (2015). Virulence-associated enzymes of Cryptococcus neoformans, Eukaryotic Cell, 14(12), pp. 1173–1185. doi: 10.1128/EC.00103-15.

Arthur, J. S. C. and Ley, S. C. (2013). Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 13(9), pp. 679–692. doi: 10.1038/nri3495.

Barluzzi, R., Brozzetti, A., Mariucci, G., Tantucci, M., Neglia, R. G., Bistoni, F., & Blasi, E. (2000). Establishment of protective immunity against cerebral cryptococcosis by means of an avirulent, non melanogenic Cryptococcus neoformans strain. Journal of neuroimmunology, 109(2), 75–86. https://doi.org/10.1016/s0165-5728(00)00319-2

Cordero, R. J., Camacho, E., & Casadevall, A. (2020). Melanization in Cryptococcus neoformans requires complex regulation. MBio, 11(1), 10-1128.

Bloom, A. L. M., Jin, R. M., Leipheimer, J., Bard, J. E., Yergeau, D., Wohlfert, E. A., & Panepinto, J. C. (2019). Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming. Nature communications, 10(1), 4950. https://doi.org/10.1038/s41467-019-12907-x

Bordon, Y. (2022). ‘Fungus hijacks TLR4 to build a type 2 immune niche’, Nature Reviews Immunology, 22(9), pp. 532–533.

Bürgel, P. H., Marina, C. L., Saavedra, P. H. V., Albuquerque, P., de Oliveira, S. A. M., Veloso Janior, P. H. H., de Castro, R. A., Heyman, H. M., Coelho, C., Cordero, R. J. B., Casadevall, A., Nosanchuk, J. D., Nakayasu, E. S., May, R. C., Tavares, A. H., & Bocca, A. L. (2020). Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1β Inflammasome-Dependent Secretion. Mediators of inflammation, 2020, 3412763. https://doi.org/10.1155/2020/3412763

Busse, O. (1894). ‘Uber parasitare Zelleinschlusse und ihre Zuchtung’, Zentralbl Bakteriol, 16, pp. 175–180.

Campuzano, A. and Wormley, F. L. (2018). ‘Innate immunity against Cryptococcus, from recognition to elimination’, Journal of fungi, 4(1), p. 33.

Cao, H. D., Xie, J. F., Lin, Q. X., Wan, Y., Gong, Z., Long, M., & Cao, H. (2020). HIV-1 gp120 enhances Cryptococcus neoformans-mediated blood-brain barrier disruption in an in vitro human brain microvascular endothelial cell model. International Journal of Infectious Diseases, 101, 297.

Casadevall, A., Coelho, C. and Alanio, A. (2018). ‘Mechanisms of Cryptococcus neoformans-mediated host damage’, Frontiers in immunology, 9, p. 855.

Chatterjee, S., Prados-Rosales, R., Itin, B., Casadevall, A., & Stark, R. E. (2015). Solid-state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal eumelanins in the cell wall. Journal of Biological Chemistry, 290(22), 13779-13790.

Chen, L., Fu, C., Zhang, Q., He, C., Zhang, F., & Wei, Q. (2020). The role of CD44 in pathological angiogenesis. The FASEB Journal, 34(10), 13125-13139. doi: https://doi.org/10.1096/fj.202000380RR.

Chen, Y., Shi, Z. W., Strickland, A. B., & Shi, M. (2022). Cryptococcus neoformans infection in the central nervous system: the battle between host and pathogen. Journal of Fungi, 8(10), 1069. doi: 10.3390/jof8101069.

Chen, Y., Shi, Z. W., Strickland, A. B., & Shi, M. (2022). Cryptococcus neoformans infection in the central nervous system: the battle between host and pathogen. Journal of Fungi, 8(10), 1069. doi: 10.3390/jof8101069.

Chiapello, L. S., Baronetti, J. L., Garro, A. P., Spesso, M. F., & Masih, D. T. (2008). Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway. International immunology, 20(12), 1527-1541.

Chun, C. D., Brown, J. C. S. and Madhani, H. D. (2011). A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell host & microbe, 9(3), pp. 243–251. doi: 10.1016/j.chom.2011.02.003.

Dambuza, I. M., Drake, T., Chapuis, A., Zhou, X., Correia, J., Taylor-Smith, L., ... & Ballou, E. R. (2018). The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLOS pathogens, 14(5), e1006978.

Dang, E. V., Lei, S., Radkov, A., Volk, R. F., Zaro, B. W., & Madhani, H. D. (2022). Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature, 608(7921), 161-167..

Davis, M. J., Tsang, T. M., Qiu, Y., Dayrit, J. K., Freij, J. B., Huffnagle, G. B., & Olszewski, M. A. (2013). Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio, 4(3), e00264-13. doi: 10.1128/mBio.00264-13.Editor.

Decote-Ricardo, D. et al. (2019). Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Frontiers in Medicine, 6(June), pp. 1–8. doi: 10.3389/fmed.2019.00129.

Departemen Parasitologi, F. (2008). ‘Buku Ajar Parasitologi Kedokteran Edisi 4: FKUI’. Jakarta.

Diniz-Lima, I., Fonseca, L. M. D., Silva-Junior, E. B. D., Guimarães-de-Oliveira, J. C., Freire-de-Lima, L., Nascimento, D. O., ... & Freire-de-Lima, C. G. (2022). Cryptococcus: history, epidemiology and immune evasion. Applied Sciences, 12(14), 7086.. doi: 10.3390/app12147086.

Dobashi-Okuyama, K., Kawakami, K., Miyasaka, T., Sato, K., Ishii, K., Kawakami, K., ... & Ohno, I. (2020). Novel Toll-like receptor 9 agonist derived from Cryptococcus neoformans attenuates allergic inflammation leading to asthma onset in mice. International archives of allergy and immunology, 181(9), 651-664.

Elsegeiny, W., Marr, K. A. and Williamson, P. R. (2018). Immunology of cryptococcal infections: developing a rational approach to patient therapy, Frontiers in immunology, 9, p. 651.

Evans, R. J., Li, Z., Hughes, W. S., Djordjevic, J. T., Nielsen, K., & May, R. C. (2015). Cryptococcal phospholipase B1 is required for intracellular proliferation and control of titan cell morphology during macrophage infection. Infection and immunity, 83(4), 1296-1304.

Fu, M. S., Coelho, C., De Leon-Rodriguez, C. M., Rossi, D. C., Camacho, E., Jung, E. H., ... & Casadevall, A. (2018). Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLOS pathogens, 14(6), e1007144.

Garelnabi, M. and May, R. C. (2018). Variability in innate host immune responses to cryptococcosis. Memorias do Instituto Oswaldo Cruz, 113(7), pp. 5–9. doi: 10.1590/0074-02760180060.

Gressler AE, Volke D, Firacative C, Schnabel CL, Müller U, Krizsan A, Schulze-Richter B, Brock M, Brombacher F, Escandón P, Hoffmann R and Alber G (2021) Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients. Front. Immunol. 12:709695. doi: 10.3389/fimmu.2021.709695

Guo, C., Chen, M., Fa, Z., Lu, A., Fang, W., Sun, B., ... & Meng, G. (2014). Acapsular Cryptococcus neoformans activates the NLRP3 inflammasome. Microbes and infection, 16(10), 845-854. doi: 10.1016/j.micinf.2014.08.013.

Santiago-Tirado, F. H., Onken, M. D., Cooper, J. A., Klein, R. S., & Doering, T. L. (2017). Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. MBio, 8(1), 10-1128.doi: 10.1128/mbio.02183-16.

Hamed, M. F., Araújo, G. R. D. S., Munzen, M. E., Reguera-Gomez, M., Epstein, C., Lee, H. H., ... & Martinez, L. R. (2023). Phospholipase B is critical for Cryptococcus neoformans survival in the central nervous system. Mbio, 14(2), e02640-22.

He, X., Shi, X., Puthiyakunnon, S., Zhang, L., Zeng, Q., Li, Y., ... & Cao, H. (2016). CD44-mediated monocyte transmigration across Cryptococcus neoformans-infected brain microvascular endothelial cells is enhanced by HIV-1 gp41-I90 ectodomain. Journal of Biomedical Science, 23(1), 1-15.

Herb, M. and Schramm, M. (2021). Functions of ros in macrophages and antimicrobial immunity, Antioxidants, 10(2), pp. 1–39. doi: 10.3390/antiox10020313.

Heung, L. J. (2017).Innate immune responses to cryptococcus, Journal of Fungi, 3(3), pp. 1–24. doi: 10.3390/jof3030035.

Höft, M. A., Hoving, J. C. and Brown, G. D. (2020). ‘Signaling C-Type Lectin Receptors in Antifungal Immunity’, Current Topics in Microbiology and Immunology, 429, pp. 63–101. doi: 10.1007/82_2020_224.

Huang, P., Gao, X., Zou, J., Chen, J., He, X., Long, M., & Cao, H. (2022). The Roles of CD44 Membrane Ruffling and Signaling in Leukocyte Transmigration across Cryptococcus Neoformans-Coinfected Blood-Brain Barrier with HIV-1 gp41 in Vitro. Blood, 140(Supplement 1), 5483-5484.

Ke, W., Xie, Y., Hu, Y., Ding, H., Fan, X., Huang, J., ... & Wang, L. (2022). A forkhead transcription factor contributes to the regulatory differences of pathogenicity in closely related fungal pathogens. mLife, 1(1), 79-91. doi: https://doi.org/10.1002/mlf2.12011.

Kourtzelis, I., Mitroulis, I., von Renesse, J., Hajishengallis, G., & Chavakis, T. (2017). From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. Journal of leukocyte biology, 102(3), 677-683. doi: 10.1189/jlb.3MR0117-024R.

Kumar, B. V., Connors, T. J. and Farber, D. L. (2018). Human T Cell Development, Localization, and Function throughout Life.Immunity, 48(2), pp. 202–213. doi: 10.1016/j.immuni.2018.01.007.

Kumari, K., Uttam, G., Singh, K., Kumari, A., & Tirkey, N. N. (2021). In-silico Studies on Virulence Factors of Cryptococcus Species: Phylogenetic Analysis and B-cell Epitope Prediction. Biointerface Research in Applied Chemistry, 11(6), pp. 14775–14793. doi: 10.33263/BRIAC116.1477514793.

Lee, S. B., Mota, C., Thak, E. J., Kim, J., Son, Y. J., Oh, D. B., & Kang, H. A. (2023). Effects of altered N-glycan structures of Cryptococcus neoformans mannoproteins, MP98 (Cda2) and MP84 (Cda3), on interaction with host cells. Scientific Reports, 13(1), 1175. doi: 10.1038/s41598-023-27422-9.

Leichner, T. and Kambayashi, T. B. T.-R. M. in B. S. (2014). White Blood Cells and Lymphoid Tissue, in. Elsevier. doi: https://doi.org/10.1016/B978-0-12-801238-3.00070-2.

León, B. (2022). Fooling TLR4 to promote fungal virulence. Immunity, 55(9), pp. 1591–1593.

Leopold Wager, C. M. and Wormley, F. L. (2015). Is Development of a Vaccine against Cryptococcus neoformans Feasible?, PLoS Pathogens, 11(6), pp. 10–15. doi: 10.1371/journal.ppat.1004843.

Lev, S., Desmarini, D., Chayakulkeeree, M., Sorrell, T. C., & Djordjevic, J. T. (2012). The Crz1/Sp1 transcription factor of Cryptococcus neoformans is activated by calcineurin and regulates cell wall integrity. PLOS one, 7(12), e51403. Available at: https://doi.org/10.1371/journal.pone.0051403.

Li, S. S., Ogbomo, H., Mansour, M. K., Xiang, R. F., Szabo, L., Munro, F., ... & Mody, C. H. (2018). Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nature communications, 9(1), 751.

Lin, J., Idnurm, A. and Lin, X. (2015). Morphology and its underlying genetic regulation impact the interaction between Cryptococcus neoformans and its hosts. Medical Mycology, 53(5), pp. 493–504. doi: 10.1093/mmy/myv012.

Lin, X., Jackson, J. C., Feretzaki, M., Xue, C., & Heitman, J. (2010). Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite-and same-sex mating in Cryptococcus neoformans. PLoS genetics, 6(5), e1000953.

Lochhead, J. J., Yang, J., Ronaldson, P. T., & Davis, T. P. (2020). Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Frontiers in physiology, 11, 914.. doi: 10.3389/fphys.2020.00914.

Ma’at, S. (2018). ‘Toll-like Receptor (TLR) dan Imunitas Natura’, Indonesian Journal of Clinical Pathology and Medical Laboratory, 15(3), p. 111. doi: 10.24293/ijcpml.v15i3.978.

Monari, C., Pericolini, E., Bistoni, G., Casadevall, A., Kozel, T. R., & Vecchiarelli, A. (2005). Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. The Journal of Immunology, 174(6), 3461-3468.

Mukaremera, L. and Nielsen, K. (2017). ‘Adaptive immunity to cryptococcus neoformans infections’, Journal of Fungi, 3(4), pp. 1–20. doi: 10.3390/jof3040064.

Murphy, K. and Weaver, C. (2016). Janeway’s immunobiology. Garland science.

O'Meara, T. R., Xu, W., Selvig, K. M., O'Meara, M. J., Mitchell, A. P., & Alspaugh, J. A. (2014). The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Molecular and cellular biology, 34(4), 673-684.

Onyishi, C. U., Desanti, G. E., Wilkinson, A. L., Fejer, G., Christophe, O. D., Bryant, C. E., ... & May, R. C. (2023). Reciprocal regulation of TLR4, TLR3 and Macrophage Scavenger Receptor 1 regulates nonopsonic phagocytosis of the fungal pathogen Cryptococcus neoformans. bioRxiv, 2023-01.

Paes H.C, Derengowski LdS, Peconick LDF, Albuquerque P, Pappas GJ Jr, Nicola AM, Silva FBA, Vallim MA, Alspaugh JA, Felipe MSS and Fernandes L (2018) A Wor1-Like Transcription Factor Is Essential for Virulence of Cryptococcus neoformans. Front. Cell. Infect. Microbiol. 8:369. doi: 10.3389/fcimb.2018.00369

Punt, J., Stranford, S. A., Jones, P. P., & Owen, J. A (2019). Allergy, hypersensitivities, and chronic inflammation. Kuby immunology, 8th edn. W. H. Freeman and Company, New York.

Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, et al. (2012) Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice. PLOS ONE 7(10): e47853. https://doi.org/10.1371/journal.pone.0047853

Ramazi, S. and Zahiri, J. (2021). Post-translational modifications in proteins : resources , tools and prediction methods, (7), pp. 1–20. doi: 10.1093/database/baab012.

Reuwsaat, J. C., Agustinho, D. P., Motta, H., Chang, A. L., Brown, H., Brent, M. R., ... & Doering, T. L. (2021). The transcription factor Pdr802 regulates titan cell formation and pathogenicity of Cryptococcus neoformans. Mbio, 12(2), 10-1128. doi: 10.1128/mBio.03457-20.

Robertson, E. J., Najjuka, G., Rolfes, M. A., Akampurira, A., Jain, N., Anantharanjit, J., ... & Bicanic, T. (2014). Cryptococcus neoformans ex vivo capsule size is associated with intracranial pressure and host immune response in HIV-associated cryptococcal meningitis. The Journal of infectious diseases, 209(1), 74-82.

Rohatgi, S. and Pirofski, L. (2017). Host immunity to Cryptococcus neoformans Soma, Physiology & behavior, 176(3), pp. 139–148. doi: 10.2217/fmb.14.132.Host.

Roth, S., Bergmann, H., Jaeger, M., Yeroslaviz, A., Neumann, K., Koenig, P. A., ... & Ruland, J. (2016). Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell reports, 17(10), 2572-2583.

Sabiiti, W. and May, R. C. (2012). Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans, Future Microbiology, 7(11), pp. 1297–1313. doi: 10.2217/fmb.12.102.

Sato, K. and Kawakami, K. (2022). PAMPs and Host Immune Response in Cryptococcal Infection, Medical Mycology Journal, 63(4), pp. 133–138. doi: 10.3314/mmj.22.005.

Schmidt, S., Tramsen, L. and Lehrnbecher, T. (2017). Natural killer cells in antifungal immunity, Frontiers in Immunology, 8(NOV), pp. 1–10. doi: 10.3389/fimmu.2017.01623.

da Silva-Junior, E. B., Firmino-Cruz, L., Guimarães-de-Oliveira, J. C., De-Medeiros, J. V. R., de Oliveira Nascimento, D., Freire-de-Lima, M., ... & Freire-de-Lima, C. G. (2021). The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Scientific Reports, 11(1), 1407.

Sjamsuridzal, W. and Wahyuningsih, R. (2016). Cryptococcus neoformans: Ekologi, Faktor Virulensi, Patogenesis dan Identifikasi, Majalah Kedokteran, 32(2), pp. 100–111.

Smith, A. D., Garcia-Santamarina, S., Ralle, M., Loiselle, D. R., Haystead, T. A., & Thiele, D. J. (2021). Transcription factor–driven alternative localization of Cryptococcus neoformans superoxide dismutase. Journal of Biological Chemistry, 296. doi: 10.1016/j.jbc.2021.100391.

Smith, A. D., Garcia-Santamarina, S., Ralle, M., Loiselle, D. R., Haystead, T. A., & Thiele, D. J. (2021). Transcription factor–driven alternative localization of Cryptococcus neoformans superoxide dismutase. Journal of Biological Chemistry, 296. doi: https://doi.org/10.1016/j.jbc.2021.100391.

So, Y. S., Maeng, S., Yang, D. H., Kim, H., Lee, K. T., Yu, S. R., ... & Bahn, Y. S. (2019). Regulatory mechanism of the atypical AP-1-like transcription factor Yap1 in Cryptococcus neoformans. Msphere, 4(6), e00785-19. doi: 10.1128/mSphere.00785-19.

Song, M. H., Lee, J. W., Kim, M. S., Yoon, J. K., White, T. C., Floyd, A., ... & Bahn, Y. S. (2012). A flucytosine-responsive Mbp1/Swi4-like protein, Mbs1, plays pleiotropic roles in antifungal drug resistance, stress response, and virulence of Cryptococcus neoformans. Eukaryotic cell, 11(1), 53-67.

Sorrell, T. C., Juillard, P. G., Djordjevic, J. T., Kaufman-Francis, K., Dietmann, A., Milonig, A., ... & Grau, G. E. (2016). Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes and infection, 18(1), 57-67. doi: https://doi.org/10.1016/j.micinf.2015.08.017.

Strickland, A. B. and Shi, M. (2021). Mechanisms of fungal dissemination, Cellular and Molecular Life Sciences, 78(7), pp. 3219–3238. doi: 10.1007/s00018-020-03736-z.

Sun, D., Zhang, M., Sun, P., Liu, G., Strickland, A. B., Chen, Y., ... & Shi, M. (2020). VCAM1/VLA4 interaction mediates Ly6Clow monocyte recruitment to the brain in a TNFR signaling dependent manner during fungal infection. PLOS pathogens, 16(2), e1008361. doi: 10.1371/journal.ppat.1008361.

Tang, J., Lin, G., Langdon, W. Y., Tao, L., & Zhang, J. (2018). Regulation of C-type lectin receptor-mediated antifungal immunity. Frontiers in immunology, 9, 123.

Thak, E. J., Lee, S. B., Xu-Vanpala, S., Lee, D. J., Chung, S. Y., Bahn, Y. S., ... & Kang, H. A. (2020). Core N-glycan structures are critical for the pathogenicity of Cryptococcus neoformans by modulating host cell death. MBio, 11(3), 10-1128. doi: 10.1128/mBio.00711-20.

Villena, S. N., Pinheiro, R. O., Pinheiro, C. S., Nunes, M. P., Takiya, C. M., DosReis, G. A., ... & Freire‐de‐Lima, C. G. (2008). Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cellular microbiology, 10(6), 1274-1285.

Voelz, K. and May, R. C. (2010). ‘Cryptococcal interactions with the host immune system’, Eukaryotic Cell, 9(6), pp. 835–846. doi: 10.1128/EC.00039-10.

Vu, K., Tham, R., Uhrig, J. P., Thompson III, G. R., Na Pombejra, S., Jamklang, M., ... & Gelli, A. (2014). Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio, 5(3), 10-1128. doi: 10.1128/mBio.01101-14.

Walsh, N. M., Wuthrich, M., Wang, H., Klein, B., & Hull, C. M. (2017). Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLOS One, 12(3), e0173866. doi: 10.1371/journal.pone.0173866.

Wangsanut, T. and Pongpom, M. (2022). The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi, International Journal of Molecular Sciences, 23(18). doi: 10.3390/ijms231810645.

Wear, M. P., Jacobs, E., Wang, S., McConnell, S. A., Bowen, A., Strother, C., ... & Casadevall, A. (2022). Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture. Journal of Biological Chemistry, 298(4). doi: 10.1016/j.jbc.2022.101769.

Williams, T. J., Gonzales-huerta, L. E. and Armstrong-james, D. (2021). Fungal-Induced Programmed Cell Death.

World Health Organization (2022). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV 2022.

Xu, L., Nirwane, A. and Yao, Y. (2019). Basement membrane and blood–brain barrier, Stroke and Vascular Neurology, 4(2), pp. 78 LP – 82. doi: 10.1136/svn-2018-000198.

Yang, C., Huang, Y., Zhou, Y., Zang, X., Deng, H., Liu, Y., ... & Xue, X. (2022). Cryptococcus escapes host immunity: What do we know?. Frontiers in Cellular and Infection Microbiology, 1570. doi: 10.3389/fcimb.2022.1041036.

Yang, C., Wang, J. and Zou, L. (2017). Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans. Experimental and Therapeutic Medicine, 14(6), pp. 5243–5250.

Yi, J., Sang, J., Zhao, J., Gao, L., Yang, Y., Yan, L., ... & Liao, W. (2020). Transcription factor Liv4 is required for growth and pathogenesis of Cryptococcus neoformans. FEMS Yeast Research, 20(3), foaa015. doi: 10.1093/femsyr/foaa015.

Zaragoza, O. (2019). Basic principles of the virulence of Cryptococcus, Virulence, 10(1), pp. 490–501. doi: 10.1080/21505594.2019.1614383.

Zhao, Y., Ye, L., Zhao, F., Zhang, L., Lu, Z., Chu, T., ... & Wang, L. (2023). Cryptococcus neoformans, a global threat to human health. Infectious Diseases of Poverty, 12(1), 20.

Downloads

Published

2023-10-20

How to Cite

Julian, J., Adawiyah, R., & Wahdini, S. (2023). BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: FOCUS ON REVIEW OF MOLECULAR INTERACTION CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN BARRIER. African Journal of Infectious Diseases (AJID), 18(1), 11–22. https://doi.org/10.21010/Ajidv18i1.3

Issue

Section

Review