EFFECT OF PENICILLIUM SPECIES ON THE ANTIBIOTIC RESISTANCE PROFILE OF ALCALIGENES FAECALIS

Authors

  • Samia S. Alkhalil Shaqra University

DOI:

https://doi.org/10.21010/Ajidv18i2.2

Keywords:

Alcaligenes faecalis; Bacterial-fungal interaction; Antibiotic resistance

Abstract

Background: Infectious diseases due to antibiotic resistant pathogens are a global public health problem, with the impact been particularly pronounced in sub-Saharan Africa. This study aimed at determining the potential effect of bacterial–fungal interaction on the antibiotic susceptibility profile of Alcaligenes faecalis.

Materials and Method: Alcaligenes faecalis was isolated from water samples. The isolate was identified using the conventional biochemical tests and the 16S rRNA molecular sequencing technique. Additionally, Penicillium species was isolated and identified based on colony morphological characteristics and microscopic features. Standardized isolates were co-cultured cultured in broth medium. Antibiotic susceptibility evaluation of the Alcaligenes faecalis from the co-culture and the original Alcaligenes faecalis was carried out using the Kirby bauer disk diffusion method.

Results: The antibiotic susceptibility profile of Alcaligenes faecalis before and after co-culture remained largely unchanged except in the case of chloramphenicol, were the isolate showed reduced susceptibility. Molecular analysis of resistance gene revealed the absence of tested gene encoding antibiotic resistance, including the streptomycin resistance (str) genes (STRA and STRB) and the erythromycin resistance methylase (ERM) gene.

Conclusion: Further research involving a wide spectrum of microorganisms and their interactions should be conducted to acquire a thorough understanding of the influence of microbial interactions on antibiotic susceptibility profiles in order to pave way for novel strategies to combat antimicrobial resistance.

References

Ahmad, I., Malak, H. A., and Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: a potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111.

Al-Mohanna, M. T. (2016). Methods for fungal enumeration, isolation and identification. Origin of Ota, 155-241.

Ammor, M. S., Flórez, A. B., van Hoek, A. H., de Los Reyes-Gavilán, C. G., Aarts, H. J., Margolles, A., and Mayo, B. (2008). Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. Journal of molecular microbiology and biotechnology, 14(1-3), 6–15. https://doi.org/10.1159/000106077

Anyanwu, M. U., Jaja, I. F., Oguttu, J. W., Jaja, C. J., Chah, K. F., and Shodeinde Shoyinka, V. (2021). Is Africa ready for mobile colistin resistance threat? Infection ecology and epidemiology, 11(1), 1962781. https://doi.org/10.1080/20008686.2021.1962781

Arenz, S., and Wilson, D. N. (2016). Bacterial protein synthesis as a target for antibiotic inhibition. cold spring harbor perspectives in medicine, 6(9).

Asghar, A. H., and Ahmed, O. B. (2018). Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice, 15(2), 541-547.

Ayukekbong, J. A., Ntemgwa, M., and Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance and Infection Control, 6(1), 1-8.

Bailey, J. K., Pinyon, J. L., Anantham, S., and Hall, R. M. (2010). Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. Journal of medical microbiology, 59(11), 1331-1339.

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS microbiology reviews, 42(1), fux053.

Brady, M. T., and Leber, A. (2018). Less Commonly Encountered Nonenteric Gram-Negative Bacilli. Principles and Practice of Pediatric Infectious Diseases, 855–859.e3. doi:10.1016/b978-0-323-40181-4.00151-1

Cantillo García, K., Calderón Duran, O., Acosta Pérez, T., Vásquez Jiménez, Á., Madrid Pérez, E., Martínez-Ávila, M. C. and Almanza-Hurtado, A. (2022). A Rare Case of Meningitis Caused by Alcaligenes faecalis in an Immunocompetent Patient. Case Reports in Medicine, 2022.

Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries—Part 2. 2nd Edition, Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511543470

Clinical and Laboratory Standards Institute (CLSI). (2018). Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

Da Costa, P. M., Loureiro, L., and Matos, A. J. (2013). Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. International journal of environmental research and public health, 10(1), 278-294.

Dal Molin, M., Gut, M., Rominski, A., Haldimann, K., Becker, K., and Sander, P. (2017). Molecular Mechanisms of Intrinsic Streptomycin Resistance in Mycobacterium abscessus. Antimicrobial agents and chemotherapy, 62(1), e01427-17. https://doi.org/10.1128/AAC.01427-17

Delgado-Valverde, M., Sojo-Dorado, J., Pascual, Á. and RodríguezBaño, J. (2013). Clinical management of infections caused by multidrug resistant Enterobacteriaceae. Therapeutic Advances in Infectious Disease, 1(2), 49-69.

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S. and Wick, L. Y. (2018). Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS microbiology reviews, 42(3), 335-352. https://doi.org/10.1093/femsre/fuy008

Ekwanzala, M.D., Dewar, J.B., Kamika, I., and Momba, M.N.B. (2018). Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infection and drug resistance, 11, 1907.

Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., and Sarniguet, A. (2011). Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and molecular biology reviews: MMBR, 75(4), 583–609. https://doi.org/10.1128/MMBR.00020-11

Gaddeyya, G., Niharika, P. S., Bharathi, P., and Kumar, P. R. (2012). Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Advances in Applied Science Research, 3(4), 2020-2026.

Garneau-Tsodikova, S., and Labby, K. J. (2016). Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm, 7(1), 11-27.

Gaze, W. H., Krone, S. M., Larsson, D. G., Li, X. Z., Robinson, J. A., Simonet, P., Smalla, K., Timinouni, M., Topp, E., Wellington, E. M., Wright, G. D., and Zhu, Y. G. (2013). Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerging infectious diseases, 19(7), e120871. https://doi.org/10.3201/eid1907.120871

Hani, M., and Eman, H. (2015). Anticancer compounds from Chaetomium globosum. Biochemistry and Analytical Biochemistry, 4(2), 1.

Hasan, M. J., Nizhu, L. N., and Rabbani, R. (2019). Bloodstream infection with pandrug-resistant Alcaligenes faecalis treated with double-dose of tigecycline. IDCases, 18, e00600.

Hoffmann, A. R., Proctor, L. M., Surette, M. G., and Suchodolski, J. S. (2016). The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Veterinary pathology, 53(1), 10-21.

Hong, W., Zeng, J., and Xie, J. (2014). Antibiotic drugs targeting bacterial RNAs. Acta Pharmaceutica Sinica B, 4(4), 258-265.

Huang, C. (2020). Extensively drug-resistant Alcaligenes faecalis infection. BMC Infectious Diseases, 20(1), 1-11.

Institute for Health Metrics and Evaluation, (2023). The burden of antimicrobial resistance (AMR) in Saudi Arabia. Retrieved from https://www.healthdata.org/sites/default/files/files/Projects/GRAM/Saudi_Arabia_0.p df

Iwu, C. D., Korsten, L., and Okoh, A. I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiology open, 9(9), e1035.

Junejo, S. Z., Tuli, S., and Trandafirescu, T. (2018). A rare case of pneumonia caused by Alcaligenes faecalis bacteria. In B52. bacterial infection case reports (pp. A3602A3602). American Thoracic Society.

Kavuncuoglu, F., Unal, A., Oguzhan, N., Tokgoz, B., Oymak, O., and Utas, C. (2010). First reported case of Alcaligenes faecalis peritonitis. Peritoneal Dialysis International, 30(1), 118-119.

Knowles, S. L., Raja, H. A., Roberts, C. D., and Oberlies, N. H. (2022). Fungal–fungal co-culture: a primer for generating chemical diversity. Natural Product Reports, 39(8), 1557-1573.

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). Aminoglycosides: An Overview. Cold Spring Harbor perspectives in medicine, 6(6), a027029. https://doi.org/10.1101/cshperspect.a027029

Kunhikannan, S., Thomas, C. J., Franks, A. E., Mahadevaiah, S., Kumar, S., and Petrovski, S. (2021). Environmental hotspots for antibiotic resistance genes. Microbiologyopen, 10(3), e1197.

Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics.

Lang, J., Li, Y., Yang, W., Dong, R., Liang, Y., Liu, J. and Meng, B. (2022). Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BMC genomics, 23(1), 1-14.

Larsson, D. J., and Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269.

Larsson, D.G.J., Flach, CF. Antibiotic resistance in the environment. Nat Rev Microbiol 20, 257–269 (2022). https://doi.org/10.1038/s41579-021-00649-x

Lee, Y. S., Kim, G. H., Koh, Y. J., and Jung, J. S. (2021). Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea. The plant pathology journal, 37(5), 489–493. https://doi.org/10.5423/PPJ.NT.05.2021.0078

Liu, M., Ma, J., Jia, W., and Li, W. (2020). Antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in Pseudomonas aeruginosa strains. Microbial Drug Resistance, 26(6), 670-676.

Lykov, I. N., and Volodkin, V. S. (2021). Presence of antibiotic-resistant bacteria in the environment. In IOP Conference Series: Earth and Environmental Science (Vol. 677, No. 5, p. 052044). IOP Publishing.

Marmann, A., Aly, A. H., Lin, W., Wang, B., and Proksch, P. (2014). Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms. Marine drugs, 12(2), 1043-1065.

Moscoso, J., Silva, I., Afonso, M., and Nunes, P. (2023). Alcaligenes faecalis, an unexpected agent of urinary tract infection in a 14-years-old boy. International Journal of Medical Reviews and Case Reports, 7(2), 45-46, DOI: 10.5455/IJMRCR.172-1671379368

Moubasher, H., Elkholy, A., Sherif, M., Zahran, M., and Elnagdy, S. (2022). In Vitro Investigation of the Impact of Bacterial–Fungal Interaction on Carbapenem-Resistant Klebsiella pneumoniae. Molecules, 27(8), 2541.

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., and Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655.

Mutuku, C., Gazdag, Z., and Melegh, S. (2022). Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World Journal of Microbiology and Biotechnology, 38(9), 152.

Netzker, T., Fischer, J., Weber, J., Mattern, D. J., König, C. C., Valiante, V. and Brakhage, A. A. (2015). Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in microbiology, 6, 299.

Nogueira, F., Sharghi, S., Kuchler, K., and Lion, T. (2019). Pathogenetic Impact of Bacterial-Fungal Interactions. Microorganisms, 7(10), 459. https://doi.org/10.3390/microorganisms7100459

Otokunefor, K., Agbude, P. and Otokunefor, T. V. (2018). Non-clinical isolates as potential reservoirs of antibiotic resistance in Port Harcourt, Nigeria. Pan African Medical Journal, 30, 167, doi:10.11604/pamj.2018.30.167.14261

Oyeleke, S. B., and Manga, S. B. (2008). Essentials of laboratory practicals in microbiology. Minna, Nigeria: Tobest Publishers, 36-75.

Prabhu, D., Rajamanikandan, S., Saritha, P., and Jeyakanthan, J. (2020). Evolutionary significance and functional characterization of streptomycin adenylyltransferase from Serratia marcescens. Journal of Biomolecular Structure and Dynamics, 38(15), 44184431.

Prestinaci, F., Pezzotti, P., and Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and global health, 109(7), 309-318.

Puah, S. M., Puthucheary, S., and Chua, K. H. (2019). First report of TEM-116 and OXA-10 extended-spectrum β-lactamase in clinical isolates of Alcaligenes species from Kuala Lumpur, Malaysia. Japanese Journal of Infectious Diseases, doi:10.7883/yoken.jjid.2018.031

Ramírez Granillo, A., Canales, M. G. M., Espíndola, M. E. S., Martínez Rivera, M. A., De Lucio, V. M. B., and Tovar, A. V. R. (2015). Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC microbiology, 15, 1-15.

Sahoo, K. C., Tamhankar, A. J., Sahoo, S., Sahu, P. S., Klintz, S. R., and Lundborg, C. S. (2012).

Geographical variation in antibiotic-resistant Escherichia coli isolates from stool, cow-dung and drinking water. International journal of environmental research and public health, 9(3), 746-759.

Schjørring, S., and Krogfelt, K. A. (2011). Assessment of bacterial antibiotic resistance transfer in the gut. International journal of microbiology, 2011.

Soleimani, N., Aganj, M., Ali, L., Shokoohizadeh, L., and Sakinc, T. (2014). Frequency distribution of genes encoding aminoglycoside modifying enzymes in uropathogenic E. coli isolated from Iranian hospital. BMC research notes, 7, 1-5.https://doi.org/10.1186/1756-0500-7-842

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Thabit, A. K., Alabbasi, A. Y., Alnezary, F. S., and Almasoudi, I. A. (2023). An Overview of Antimicrobial Resistance in Saudi Arabia (2013–2023) and the Need for National Surveillance. Microorganisms, 11(8), 2086. https://doi.org/10.3390/microorganisms11082086

Turner, S., Pryer, K. M., Miao, V. P., and Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis 1. Journal of Eukaryotic Microbiology, 46(4), 327-338.

Wachino, J. I., and Arakawa, Y. (2012). Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resistance Updates, 15(3), 133-148.

Wang, X., Yu, D., and Chen, L. (2023). Antimicrobial resistance and mechanisms of epigenetic regulation. Frontiers in Cellular and Infection Microbiology, 13, 1199646.

Walsh TR, Gales AC, Laxminarayan R, and Dodd PC (2023) Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med 20(7): e1004264. https://doi.org/10.1371/journal.pmed.1004264

Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 12(1), 35-48.

Yu, M., Li, Y., Banakar, S. P., Liu, L., Shao, C., Li, Z., and Wang, C. (2019). New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35. Frontiers in Microbiology, 10, 915.

Zakai, S. A. (2019). Antibiotic resistance in Saudi Arabia and some Middle Eastern countries: Current status. African Journal of Microbiology Research, 13(8), 151-157.

Zhou, N., Cheng, Z., Zhang, X. Lv, C., Guo, C., Liu, H., Dong, K. and Yongzhang Zhu, Y. (2022). Global antimicrobial resistance: system-wide comprehensive investigation using the Global One Health Index. Infect Dis Poverty 11, 92. https://doi.org/10.1186/s40249-022-01016-

Downloads

Published

2024-03-08

How to Cite

Alkhalil, S. S. (2024). EFFECT OF PENICILLIUM SPECIES ON THE ANTIBIOTIC RESISTANCE PROFILE OF ALCALIGENES FAECALIS . African Journal of Infectious Diseases (AJID), 18(2), 8–18. https://doi.org/10.21010/Ajidv18i2.2

Issue

Section

Articles